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a b s t r a c t

The watershed algorithm is the most common method used for peak detection and integration in two-
dimensional chromatography. However, the retention time variability in the second dimension may
render the algorithm to fail. A study calculating the probabilities of failure of the watershed algorithm
was performed. The main objective was to calculate the maximum second-dimension retention time
variability, �2tR,crit, above which the algorithm fails. Several models to calculate �2tR,crit were developed
and evaluated: (a) exact model; (b) simplified model and (c) simple-modified model. Model (c) gave
eywords:
wo-dimensional chromatography
atershed algorithm

eak detection

the best performance and allowed to deduce an analytical expression for the probability of failure of the
watershed algorithm as a function of experimental �2tR, modulation time and peak width in the first and
second dimensions. It could be demonstrated that the probability of failure of the watershed algorithm
under normal conditions in GC × GC is around 15–20%. Small changes of �2tR, modulation time and/or
peak width in the first and second dimension could induce subtle changes in the probability of failure
of the watershed algorithm. Theoretical equations were verified with experimental results from a diesel

C and
sample injected in GC × G

. Introduction

The growing complexity of the data generated by modern liq-
id chromatography (LC) and gas chromatography (GC) systems
equires the development of new data analysis algorithms. The
lgorithms to be applied depend on the application, and range from
ase-line treatment to chromatogram alignment methods. In most
f the applications, peak detection (and peak integration) is one of
he key steps in the analysis process. Peak detection might be trou-
lesome when complex chromatograms are being analysed, with
eak numbers easily exceeding the thousands.

In one-dimensional chromatography with single-channel
etection, peak-detection methods are almost fully developed.
hey are based on detecting a raise of the signal coming from
he detector and applying the condition of unimodality (i.e., the
ignal should have only one maximum). Two main families of peak-
etection methods have been developed [1]: those that make use
f derivatives, and those that make use of matched filters. When a

ulti-channel detector is used (e.g., MS), new possibilities for peak

etection are possible. Different algorithms have been developed
n order to make use of the relational information provided by the
xistence of more than one detection channel. In particular, the

∗ Corresponding author. Tel.: +31 205256531.
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were found to be in good agreement with the experiments.
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advent of the “-omics” disciplines has stimulated the development
of a significant quantity of statistical tools, including novel methods
for peak detection in chromatography. For a review, see [2–4].

Peak-detection methods in comprehensive two-dimensional
chromatography are less advanced. This is mainly due to the fact
that these techniques are not completely mature yet. Adapting
the peak-detection algorithms developed for hyphenated tech-
niques to two-dimensional chromatography is not straightforward
for two reasons. First, in two-dimensional chromatography, the
condition of unimodality holds for both dimensions (a chromato-
graphic peak has only a single retention time in both the first
and the second dimension). This condition is normally not met
in multi-channel detection. Second, a modulation cycle in com-
prehensive two-dimensional chromatography is normally several
orders of magnitude longer than the detector’s sampling rate. This
makes a chromatogram in two dimensions to appear undersam-
pled in the first dimension as opposed to the highly sampled
chromatogram obtained with multi-channel detection. One should
note that this second condition does not apply when the two-
dimensional separation is performed in space (such as in 2D-PAGE
electrophoresis, or two-dimensional thin layer chromatography).

Opposed to separations in space, LC × LC or GC × GC are two-
dimensional chromatographic methods in time. In these methods,
a peak is analysed only a limited number of times by a (fast) sec-
ond dimension during its elution in the (slow) first dimension,
hence the low sampling rate in the first dimension. This article

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:g.vivotruyols@uva.nl
dx.doi.org/10.1016/j.chroma.2009.12.063
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s devoted only to time-driven two-dimensional separations (i.e.,
C × GC or LC × LC), so it is not applicable to spatially separated
hromatograms (e.g., 2D-PAGE).

So far only a limited number of peak-detection methods
or (time-driven) two-dimensional chromatography has been
escribed in the literature [5–7]. Only two main families of meth-
ds are available, those based on the watershed algorithm [8],
nd those based on an extension of the one-dimensional peak-
etection algorithms [9,10]. The main difference between the two
amilies of methods relies in the fact that watershed-algorithm
ased methods make use of the true two-dimensional image gen-
rated in two-dimensional chromatography, whereas the extended
ne-dimensional algorithms are based on the analysis of the one-
imensional raw signal arising from the detector. The watershed
lgorithm was originally developed to delimitate single catchment
reas of geographic zones [11] (see Section 2.2.1 for a detailed
xplanation), and has been adapted to peak detection in two-
imensional chromatography by Reichenbach et al. [8]. Methods of
he second family are normally based on a two-step procedure. In a
rst step, one-dimensional peak-detection algorithms are applied
o the raw, one-dimensional signal. In a second step, the previously
etected peaks are then “merged” after it has been decided that
hey belong to the same modulated compound.

As it will be demonstrated in this paper, one of the main
rawbacks of the watershed algorithm is its intolerance to second-
imension retention time variability. This intolerance may bring
he algorithm to fail, splitting a two-dimensional peak into two
eaks (or two catchment areas), when there is only a single
wo-dimensional peak. Unfortunately, second-dimension reten-
ion time variability is unavoidable, and hence so is failure of the
atershed algorithm. In this article, a study is performed to pre-
ict in which situations the watershed algorithm will fail. A model
or time-driven two-dimensional chromatographic peaks is devel-
ped. The model (applicable to both LC × LC and GC × GC) is used
o calculate which combination of values for second-dimension
etention time variability, first- and second-dimension peak width,
odulation time and peak phase are not tolerated. An experimen-

al study is performed in GC × GC to compare data calculated using
he model (and its approximations) with experiments.

. Theory

.1. Peak model for two-dimensional chromatography

Let us suppose a two-dimensional chromatographic peak with
nown first- and second-dimension retention times (1tR and 2tR)
nd known first- and second-dimension peak widths (1� and 2�).
he raw signal from the two-dimensional chromatograph (prior
o any manipulation, including “folding” the data into a two-
imensional data table) is represented in Fig. 1. This signal can be
odelled as a sum of sub-peaks:

(t) =
∞∑

i=−∞
aiyi =

∞∑
i=−∞

ai
1

2�
√

2�
exp

[
−1

2

(
t − ti

2�

)2
]

(1)

here the subindex i = −∞, . . ., −2, −1, 0, 1, 2, . . ., ∞ corresponds
o the sub-peaks resulting from the modulated fractions of the
rst-dimension peak injected into the second dimension, ai is the
elative abundance of the ith modulated peak (see Eq. (2)), yi rep-
esents the equation for the ith sub-peak, ti is the retention time
here the peak is represented (see Eq. (3)), and 2� is the peak

idth (measured as the standard deviation) of the sub-peak in

he second dimension. Note that this model has two underlying
ssumptions. First, it assumes a constant value of 2� for the dif-
erent sub-peaks. Second, it assumes a Gaussian, symmetric peak

odel. Both assumptions are not strictly true in practice, but these
Fig. 1. Schematic representation of a modulated peak following Eqs. (1)–(4), with
different values of � ((a) � = 0; (b) � = −0.5; (c) � = 0.25). Only sub-peaks i = −2, −1,
0, 1, and 2 are represented. The value of the modulation time (m) is overlaid.

assumptions are not significant for our computations. As the quan-
tity of material injected into the second dimension corresponds to
the fraction of the first-dimension peak contained between ti − m/2
and ti + m/2 (i.e., one modulation period), ai can be defined as:

ai = A
1�

√
2�

∫ ti+(m/2)

ti−(m/2)

exp

[
−1

2

(
t

1�

)2
]

dt (2)

where m is the modulation time and A is a factor expressing the
total abundance of the compound. Note that the expression inside
the integral corresponds to an unmodulated peak arisen in the first
dimension, and the integral limits correspond to the fraction of this
peak contained between ti − m/2 and ti + m/2. This is a condition
for the two-dimensional chromatography to be comprehensive. In

practice, it may be possible to inject in the second dimension only
part of the sample eluted from the first. In this case, as long as this
split of the first-dimension eluent is constant along the elution, Eq.
(2) is still valid (only parameter A has to be corrected). For simplic-
ity, the first-dimension peak is centred around t = 0, but in practice
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Fig. 2. Representation of a peak from the diesel sample (Section 3.1) detected with
G. Vivó-Truyols, H.-G. Janssen / J.

he peak is found at t = 1tR + 2tR + m. ti is represented as:

i = (i + �)m (3)

ith � being the modulation phase. � may vary between −1/2 and
/2: the peak is “in phase” when � = 0 and “out of phase” when
= −1/2 or 1/2. Rearranging Eqs. (1)–(3), the following expression

s found for a collection of sub-peaks:

(t) = A
1�2�2�

∞∑
i=−∞

exp

[
−1

2

(
t − (i + �) m

2�

)2
]

×
∫ m(i+�+(1/2))

m(i+�−(1/2))

exp

[
−1

2

(
t

1�

)2
]

dt (4)

One should note that, with this model, values of i < 0 corre-
pond to sub-peaks that show an increasing peak height with time,
hereas i > 0 correspond to sub-peaks with decreasing height over

ime. The sub-peak i = 0 corresponds to the sub-peak having the
aximum peak height, except for the special case of � = 0.5 or
= −0.5 (where there appear two peaks with exactly the same
eight).

In the following computations it is useful to have an expression
or a single sub-peak, yi(t). Such an expression can be straightfor-
ardly derived by eliminating the sum in Eq. (4):

i(t) = A
1�2�2�

exp

[
−1

2

(
t − (i + �)m

2�

)2
]

×
∫ m(i+�+(1/2))

m(i+�−(1/2))

exp

[
−1

2

(
t

1�

)2
]

dt (5)

The chromatographic definition of a two-dimensional peak,
ccording to this model, should be a collection of sub-peaks that
i) show the same second-dimension retention time (within some
egree of tolerance due to instrument variability) and (ii) show only
ne maximum when the height of the sub-peaks is monitored.

.2. Peak-detection methods for two-dimensional
hromatography

.2.1. The watershed algorithm
The so-called watershed algorithm (sometimes also called

atershed transform) has been extensively used in many areas
f image analysis [11]. In the context of two-dimensional chro-
atography, the algorithm is applied to the inverse of the image,

ence a two-dimensional chromatographic peak (i.e., a mountain)
ppears like a negative peak (i.e., a basin). The algorithm works
imulating a flood of the surface to its minima, and detecting the
ifferent basins that can be separated. The method has been applied
o peak detection in two-dimensional gas chromatography [8], and
D-gel electrophoresis [12]. Without pre-treatment, however, the
atershed algorithm results in oversegmentation of the image,

ince noise disturbances tend to be assimilated as chromatographic
eaks. Therefore, some kind of noise removal is normally applied
rior to the watershed transform [8].

One disadvantage of the watershed algorithm is that it does not
mpose the condition of continuity for every sub-peak. This is illus-
rated in Fig. 2, where a peak from a GC × GC analysis of a diesel
ample is detected with the watershed algorithm, and depicted in
etail (for more details about the sample, see Section 3). The boxes

verlaid on the contour plot indicate the regions that the watershed
lgorithm has detected as belonging to the peak. For simplicity, let
s restrict our comments to the signal eluting at 1tR = 608 s (marked
ith a large arrow). As can be seen, several interrupted regions

labelled from a to f) belong to the same two-dimensional peak.
the watershed algorithm. Contour lines correspond to the FID signal intensity. Rect-
angles correspond to the peak region detected by the watershed algorithm. For
explanation about the regions marked from a to f, see text. The symbol * corresponds
to the position of the peak maximum detected by the watershed algorithm.

This would mean that the substance in question “appears” and
“disappears” several times during the course of the elution. This
is impossible in chromatography, where every sub-peak should be
eluted in a continuous way.

2.2.2. Peak-detection methods based on merging
one-dimensional peaks

Several methods have been described in the literature that
detect peaks in two-dimensional chromatography using one-
dimensional peak-detection methods. The general idea of these
methods follows a two-step procedure. First, peaks are detected
in a one-dimensional form, using the raw signal arising from the
detector. This would yield, when applied to the signal in Fig. 1a, to
the detection of seven peaks. This step makes use of the classical
peak-detection algorithms from one-dimensional chromatography
[1], and avoids the drawback of discontinuity of sub-peaks that the
watershed algorithm has (explained in previous section, and Fig. 2).
In a second step, a collection of criteria is applied to decide whether
a collection of one-dimensional peaks belongs to the same (mod-
ulated) peak and should be “merged” in a single two-dimensional
peak or not. The criteria applied may vary with the different ver-
sions, but all are based on peak profile similarities. In short, when
the seven peaks detected in the first step (Fig. 1a) are similar (e.g.,
because they elute at the same second-dimension retention time),
the integration algorithm will decide to merge them. In a previ-
ous work, we published an algorithm that measures the overlap
of peak regions of adjacent peaks to decide whether peaks have to
be merged [10]. A simplified versions of the algorithm, published
later [13], was used in this article. The algorithm takes into account
the differences between second-dimension retention times as the
criterion to merge one-dimensional peak and uses the unimodality
condition.

2.2.3. Appearance of saddle points in two-dimensional
chromatograms

In two-dimensional gas chromatography, the watershed algo-

rithm detects a two-dimensional chromatographic peak when a
group of one-dimenisonal peaks appears like a single peak (or
“mountain”). This means that, if a saddle point is detected within
a single peak, the watershed algorithm splits the peak in two (like
in geographical studies, a saddle point splits a single catchment
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Fig. 3. Rearrangement of the signal corresponding to Fig. 1c in a matrix, represented in different ways: (a) with perspective; (b) bird-eye view; (c) from a point of view
p n tim
r art e.

a
i
o
d
r
T
d
l
t
o
(
r

arallel to the 1tR axis. (a–c) Depict the situation without second-dimension retentio
etention times for subsequent peaks (Eq. (6)). The saddle point (sp) is overlaid in p

rea in two). Without second-dimension retention time variabil-
ty, the watershed definition and the chromatographic definition
f a two-dimensional peak coincide. However, shifts in the second-
imension retention times can make a saddle point to appear,
esulting in the segmentation of a single two-dimensional peak.
o illustrate this effect, let us consider first folding the raw signal
epicted in Fig. 1c to form a two-dimensional data table that col-
ects at each column the signal corresponding to one modulation
ime (see Ref. [10] for details). A graphical, three-dimensional view
f this table is depicted in Fig. 3a. Fig. 3b represents a contour plot
a bird-eye view) of this situation. Fig. 3c shows the same 3D plot
otated in such a way that the point of view is parallel to the 1tR
e variability. In (d–f), a constant decrease of ı is introduced in the second-dimension

axis. As can be seen, in Fig. 3c the variability in second-dimension
retention times is absent, hence the retention times of the peak
maxima of the sub-peaks are identical.

Let us suppose, however, that there is indeed a variation
in the second-dimension retention times. This might be due to
either (unavoidable) instrumental variability – inducing a ran-
dom variation – or to the effect of a temperature gradient in the

second-dimension column – inducing a constant drift. A combina-
tion of both effects is often the case in practice. Fig. 3d–f represents
the same situation as in Fig. 3a–c, but a constant drift in second-
dimension retention time is observed. This is artificially introduced
by using ti = (i + �)m + iı as the retention time for each sub-peak,
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nstead of ti = (i + �)m (as it was defined in Eq. (3)):

(t) = A
1�2�2�

∞∑
i=−∞

exp

[
−1

2

(
t − (i + �)m + iı

2�

)2
]

×
∫ m(i+�+(1/2))

m(i+�−(1/2))

exp

[
−1

2

(
t

1�

)2
]

dt (6)

The ı parameter is the delay in the second-dimension retention
ime between two consecutive sub-peaks, see Fig. 3e. A negative
alue of ı (as it happens in Fig. 3e) means that the sub-peak is
head with respect to its preceding sub-peak. One should note that
e have restricted the plot to a constant drift for clarity, but all

quations developed in this section are applicable to any kind of
hift (random, constant or a combination of both). As can be seen
Fig. 3e), a saddle point appears, preventing the watershed algo-
ithm to find the collection of (one-dimensional) sub-peaks that
elong to the same two-dimensional peak. The saddle point appears
ecause the maximum of one of the sub-peaks is above the pro-
le of the previous sub-peak (in Fig. 3f the maximum of sub-peak
1 is above sub-peak y0 for certain regions). A saddle point may
ppear in situations with some second-dimension retention vari-
bility, which is in fact unavoidable from the experimental point
f view. However, a small second-dimension retention time vari-
bility do not cause a saddle point to appear. The purpose of this
ection is to discover when the second-dimension retention time
ariability results in the appearance of a saddle point.

Fig. 4 represents the situation depicted in Fig. 3d with more
etail. Only sub-peaks y1 and y0 are represented for clarity. As
an be seen, there is a maximum difference (�tcrit) for 2t0,max and
t1,max. Situations in which the difference between these two reten-
ion times is above this threshold will induce a saddle point in the
hree-dimensional surface, making the watershed algorithm to fail.
xpressed more accurately, the watershed algorithm will fail when:

(i) the quantity |2t1,max − 2t0,max| is higher than �tcrit for
−1/2 ≤ � ≤ 0,

ii) the quantity |2t1,max − 2t0,max| is higher than �tcrit for
0 ≤ � ≤ 1/2.

Examples of situation (i) and (ii) are depicted in Fig. 4a and b,
espectively. One should note that we have only considered the
ub-peaks corresponding to i = 0 and its neighbours (i = −1 and i = 1)
nd not the other sub-peaks. This is because these sub-peaks are
lways more similar in height (see Fig. 1) than other combinations
f adjacent sub-peaks, and therefore they are the primary cause of
addle-point appearance.

.2.4. Analytical expression of maximum second-dimension
etention time variation between consecutive sub-peaks to avoid
atershed-algorithm failure

In this section we deduce the analytical solution for �tcrit, the
aximum retention time variation between two consecutive sub-

eaks belonging to the same compound that avoids a failure of the
atershed algorithm. From Eq. (5) one can find an expression for

he maximum height of the ith sub-peak, yi,max, which is found at
= (i + �)m: ∫ m(i+�+(1/2)) [ ( )2

]

i,max = A

1�2�2� m(i+�−(1/2))

exp −1
2

t
1�

dt (7)

For case (i), we want to find the value of t for peak y0 at which
he peak height equals y1,max. Taking into account the expression
Fig. 4. (a) Representation of the same situation depicted in Fig. 3f. (b) Corresponds
to the same situation as in (a), but with a value of � of 0.25. For details about the
rest of the parameters, see text (Section 2.2.4). For simplicity, only the two highest
sub-peaks have been represented in each case.

of y0 in Eq. (5) and equalling it to y1,max (Eq. (7)) yields:

y0(t) = A
1�2�2�

exp

[
−1

2

(
t − �m

2�

)2
]

×
∫ m(�+(1/2))

m(�−(1/2))

exp

[
−1

2

(
t

1�

)2
]

dt = y1,max

= A
1�2�2�

∫ m((3/2)+�)

m((1/2)+�)

exp

[
−1

2

(
t

1�

)2
]

dt (8)

Solving the previous equation for t yields an expression for t0,crit:

t0,crit = �m + 2�

√√√√√−2 ln

∫ m((3/2)+�)
m((1/2+�))

exp
[
−(1/2)(t/1�)2

]
dt∫ m(�+(1/2))

m(�−(1/2))
exp
[
−(1/2)(t/1�)2

]
dt

(9)
Note that in Fig. 4a the time quantities have been related to the
second-dimension retention time. However, as within the modula-
tion period second-dimension retention times represent a shifted
axis of the absolute retention time, t, �tcrit can be expressed as
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tcrit = t0,crit − t0,max instead of �tcrit = 2t0,crit − 2t0,max (as can be
een in the Fig. 4a). As t0,max = �m, then:

tcrit = 2�

√√√√√−2 ln

∫ m(�+(3/2))
m(�+(1/2))

exp
[
−(1/2)(t/1�)2

]
dt∫ m(�+(1/2))

m(�−(1/2))
exp
[
−(1/2)(t/1�)2

]
dt

(10)

For case (ii) (0 ≤ � ≤ 1/2), we want to find the value of t for peak
0 at which the peak height equals y−1,max. This yields the following
xpression:

tcrit = 2�

√√√√√−2 ln

∫ m(�−(1/2))
m(�−(3/2))

exp
[
−(1/2)(t/1�)2

]
dt∫ m(�+(1/2))

m(�−(1/2))
exp
[
−(1/2)(t/1�)2

]
dt

(11)

In this case we have considered �tcrit = t0,max − t0,crit.
It is convenient to express Eqs. (10) and (11) as a function of the

rror function, erf. Making use of the property of erf(−b) = −erf(b),
qs. (10) and (11) yield:

tcrit = 2�

√
−2 ln

erf(a(
∣∣�∣∣− (1/2))) − erf(a(

∣∣�∣∣− (3/2)))

erf(a(
∣∣�∣∣+ (1/2))) − erf(a(

∣∣�∣∣− (1/2)))
(12)

here a = m/(1�
√

2). The validity of Eq. (12) was tested (see
ppendix A.1). Eq. (12) can be approximated (see Appendixes A.2
nd A.3) to the more following expression:

tcrit =
2�
1�

m

√
1 − 2

∣∣�∣∣(˛ + ˇ
m
1�

)
(13)

ere ˛ = 1.037 and ˇ = −0.094 are empirical parameters.

.2.5. Probability of failure of the watershed algorithm
Eq. (13) can be used to calculate the probability of failure of the

atershed algorithm for a given chromatogram. To this aim, the
alue of � from the previous equation is taken apart (this operation
ould not be possible if the equation depends on the error function,

s happens with Eq. (12)). This yields an expression for �crit:

crit = 1
2

(
1 −
(

�tcrit

˛ + ˇ(m/1�

1�
2�m

)2
)

(14)

As larger absolute values of � mean smaller differences between
0 and y±1 (see Fig. 1) one can state that the watershed algo-
ithm fails for all situations in which

∣∣�∣∣ ≥ �crit. Next we assume
hat, in two-dimensional chromatography, the collection of two-
imensional peaks will show a flat distribution of � values. In other
ords, there is no preference for a given � value in a complex

hromatogram. This was checked in the experimental data in Sec-
ion 4.3 (results not shown). Therefore, we can easily calculate the
robability of failure of the watershed algorithm at a given �crit
alue:

fail = (1/2) − �crit

(1/2)
(15)

here the numerator of the equation is the number of failure cases,
nd the denominator the number of possible cases. Substituting Eq.
14) in Eq. (15) yields:
fail =
(

�tcrit

˛ + ˇ(m/1�)

1�
2�m

)2

= (�tcrit)
2
(

1
˛ + ˇq

p
)2

(16)

here we have defined p = 1�/(2�m) and q = m/1�.
atogr. A 1217 (2010) 1375–1385

3. Experimental

3.1. Reagents, samples and apparatus

The diesel sample was obtained from a local gas station. The
sample was analysed on an Agilent 6890N gas chromatograph
equipped with a LECO quad-jet GC × GC modulator (LECO Corp., St.
Joseph, MI, USA), a flame ionization detector (FID), electronic pres-
sure controller and separate first- and second-dimension ovens.
The first-dimension separation column was a 10-m long, 180-�m
inner diameter fused silica capillary column coated with a 0.2 �m
RTX-5 stationary phase (Restek, Bellefonte, PA, USA). The second-
dimension column was a 1.1 m, 100 �m internal diameter column
with a 0.1 �m DB-17 stationary phase (J&W, Folson, CA, USA). The
sample was diluted with n-heptane to a final ratio of 1:1 diesel/n-
heptane. The injector temperature was set to 250 ◦C, the split ratio
to 150:1. The initial oven temperature was set to 40 ◦C for the pri-
mary oven and to 60 ◦C for the secondary oven with an isothermal
hold of 5 min. The system was operated at a constant inlet pres-
sure of 195 kPa. The temperature program had a ramp of 1.5 ◦C/min
from 40 ◦C to 260 ◦C for the primary oven and 60–280 ◦C for the sec-
ondary oven. Data collection for the FID was performed at 200 Hz.
The modulation period was 8 s.

3.2. Software

The chromatogram was exported as *.cdf format from the LECO
ChromaTOF 3.22 software (LECO Corp., St. Joseph, MI, USA), and
imported into MATLAB 7.7 (The Mathworks, Natick, MA, USA).
Home-built routines were written in MATLAB for further data treat-
ment, including chromatogram folding and two-dimensional peak
detection (see Section 3.3).

3.3. Measuring 2D peak features

In Section 4.2, a GC × GC chromatogram of a diesel sample was
studied. The peak-detection algorithm described in Section 2.2.2
was applied to the data. Further computations were performed to
the detected peaks to calculate other peak features: 1tR, 2tR, 1�, 2�
and �2tR. The way these peak features are calculated is explained
below.

The first-dimension retention time, 1tR, is calculated using the
definition of the first moment of a distribution, applied to the col-
lection of sub-peaks:

1tR =
∑np

j=1aj
1tR,j∑np

j=1aj

(17)

where np is the number of sub-peaks that have been merged in
a two-dimensional peak, aj is the peak area of the jth sub-peak,
and 1tR,j is the first-dimension retention time of the jth sub-peak,
calculated using the first moment as explained in [1].

The second-dimension peak retention, 2tR, is computed in a sim-
ilar way:

2tR =
∑np

j=1aj
2tR,j∑np

j=1aj

(18)

Standard deviation in the first dimension is calculated as fol-
lows:√√√∑np 1 1 2

1� =√ j=1aj( tR,j − tR)∑np

j=1aj

(19)

Finally, the standard deviation in the second dimension was cal-
culated by pooling the variances of all the sub-peaks in a single
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alue:

� =

√√√√∑np
j=1aj(2�j)

2∑np
j=1aj

(20)

here 2�j corresponds to the standard deviation in the second
imension of the jth sub-peak.

. Results and discussion

.1. Probabilities of failure of the watershed algorithm vs.
epeatability of second-dimension retention times

Fig. 5 illustrates in a single plot the probabilities of failure of the
atershed algorithm (Pfail) against the repeatability of the second-
imension retention times of consecutive sub-peaks (�tcrit) using
q. (16). In two-dimensional gas chromatography, typical values of
�/2� are around 100, with modulation values around m = 10 s. This
ields to a value of p of 10 s−1 (i.e., long-dash curves in Fig. 5). The
/1� ratio is inversely proportional to the number of cuts per peak.
ssuming the peak is 41� broad in the first dimension, q = 0.5 means
ight cuts per peak, q = 1 means four cuts per peak, q = 2 means two
uts per peak and q = 1 means an average of one cut per peak (which
arely occurs in practice, since with this conditions there is still a
reat chance for the peak to appear in more than one modulation
ycle). A typical value of q = 1 (four cuts per peak) and p = 10 s−1

rings us to the curve labelled with “a” in Fig. 5. This curve implies
hat there is around 20% of probability of failure of the watershed
lgorithm with chromatograms showing a variability of 0.05 s in the
econd-dimension retention time between consecutive sub-peaks.
learly, a probability of failure of 20% cannot be neglected, specially

f one considers that a variability of 0.05 s in 2tR is not rare in two-
imensional chromatography. Even more disappointing is the 80%
robability of failure that could be expected with the same values
f p and q, but with chromatograms showing a variability of 0.1 s

n the second dimension between consecutive peaks (which is not
are with sharp temperature gradients in the second dimension).

It is instructive to inspect the effect on the probability of failure
hen �2tR, 1�, 2� or m change, according to Eq. (16). Moreover,

his can help the user to decrease the failure of the watershed

ig. 5. Probabilities of failure of the watershed algorithm according to Eq. (16) vs.
2tR. Lines: solid, p = 2.5; short dash, p = 5; long dash, p = 10; dash–dot–dash, p = 20.

ymbols: q = 0.5; q = 1; q = 2; q = 4.
atogr. A 1217 (2010) 1375–1385 1381

algorithm, moving to regions of Fig. 5 that yield less probability of
failure. The probability of failure decreases quadratically when the
second-dimension retention time repeatability decreases. Hence,
special care should be taken with �2tR. For example, a modula-
tor yielding half the instrumental variability in second-dimension
retention times would decrease the probability of failure of the
watershed algorithm by a factor of four. Making the peaks sharper
in the first dimension (decreasing 1�) decreases the probability of
failure, since p is decreased and q is increased. Another way to
decrease the probability of failure could be via an increase of 2�
(which decreases p). Finally, an increase of the modulation time
(m) also decreases the probability of failure, since the value of p
decreases and the value of q increases.

4.2. Characterisation of peaks from diesel sample

In order to check empirically the probability of failure of the
watershed algorithm, the real two-dimensional GC × GC chro-
matogram of a diesel sample was studied. The purpose of the study
was to characterise a sample (considering the values of 1�, 2�),
and getting an estimation of the experimental variability of reten-
tion times in the second dimension for the two-dimensional peaks.
Then, the probabilities of failure of the watershed algorithm via Eq.
(12) could be calculated, and compared with the estimation given
in Eq. (16).

To this end, we used the peak-detection algorithm described in
Section 2.2.2 as a reference method. The algorithm was applied to
the sample, with a height-rejection threshold of 500 and a threshold
of �2tR of 0.1 s. The height-rejection threshold was set high enough
to make sure that no noise was detected as a peak, but not too
high to avoid rejecting the majority of peaks. The value of �2tR
was carefully selected by visual inspection of the chromatogram.
This parameter may have an impact on the results, since wrongly
merged peaks (being too far apart in second-dimension retention
times) would bring us to the wrong conclusion that the variation
between second-dimension retention times is too high. However,
with a value of �2tR of 0.10, this effect could be neglected, since
the majority of the peaks showed an experimental variability below
0.10, and the number of two-dimensional peaks having high values
of �2tR (that could be wrongly detected) is not representative.

One should note that it is impossible to fully check the perfor-
mance of the watershed algorithm with a real sample, since there is
no method available able to decide correctly whether a collection of
one-dimensional sub-peaks belong to the same two-dimensional
peak. In other words, it is impossible to know a priori which of
the cases yielding two peaks with the watershed are correctly
split (because the situation truly represents two peaks) or they are
wrongly split because of the appearance of the saddle point.

The application of the peak-detection algorithm described
above detected more than 2100 two-dimensional peaks. The two-
dimensional peaks showing a single sub-peak were first discarded,
as 1� could not be calculated, yielding a subset of around 1100
peaks. For this subset of peaks, the distributions of values of 1�, 2�
and �2tR were calculated and depicted in Fig. 6. As can be seen, the
values of 1� are typically around 100 times larger than 2�, which
follows previous theoretical considerations [14]. The high number
of peaks having a value of 1� between 2 and 4 s comes from the
large population of peaks having only two sub-peaks.

The probabilities of failure of the watershed algorithm in this
chromatogram were calculated as follows. First, the correlation
between 1� and 2� was checked by visually inspecting a plot of 1�

vs. 2�. As the correlation was totally inexistent (results not shown),
the joint distribution of 1� and 2� could be calculated just multi-
plying the probability associated for each combination of 1� and
2� intervals following the bar diagrams in Fig. 6. For example, the
probability of finding a peak with 1� between 6 and 8 s and a 2�
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ig. 6. Distribution of values of �2tR, 1�, and 2� for the detected peaks of the diesel
ample studied in this work (see Section 4.2). Peaks were detected following the
lgorithm explained in Section 2.2.2. Peaks that had only one sub-peak are not
epicted, since 1� could not be calculated.

etween 0.08 and 0.1 s was found multiplying the values of prob-
bility associated to both intervals in Fig. 6 (labelled with p1 and
2 in the figure). This was done for all 1� and 2� combinations. In
next step, for each of these combinations, a representative value
f 1� and 2� was calculated taking into account the centre of each
nterval (e.g., in the example above, a value of 1� of 7 s and a value
f 2� of 0.09 s was considered). In a next step, at each 1� and 2�
ombination, Eq. (12) was applied to calculate �tcrit for a collection
f � values, with � ranging from −1/2 to 1/2. For each of these �
alues, the probability of having a �2tR higher than �tcrit, p1� , 2�,� ,
as calculated considering the experimental distribution of �2tR in

ig. 6c. The probability of fail of the watershed algorithm at each 1�
nd 2� was calculated summing all p1� , 2�,� over the whole range

f � values. Finally, the overall probability of failure was calculated
ssociating the probability of fail at each 1� and 2� combination
ith the probability of having this combination (computed above).

he sum of all these probabilities yields a value around 16%. This
alue is in accordance with Fig. 5. If one considers the mean values
atogr. A 1217 (2010) 1375–1385

of 1� (around 5 s) and 2� (around 0.09 s) and the value of m (8 s), the
values of p and q are around 7 s−1 and 1.6, respectively. This would
produce a curve between the dash–dot–dash and the long-dash
lines in Fig. 5. As the most probable variability between second-
dimension retention times is around 0.02 s (see Fig. 6c), the position
depicted with the * symbol (labelled in Fig. 5) represents the cur-
rent experimental situation, with a probability of failure around
15% (which is in accordance with the detailed computation above).
Fig. 5 allows us to consider how robust the watershed algorithm
is against relatively small variations in �2tR. In situations with a
steep curve, as it happens with the current p and q values, a small
variability between second-dimension times yields to a consider-
able increase of the probabilities of failure. For example, a value of
�2tR of 0.04 s (which is still quite reasonable considering Fig. 6c),
yields to the disappointing probability of failure of around 50%.

4.3. Comparison of peak-detection results obtained with
watershed algorithm and a conventional two-dimensional
peak-detection method

Studying the probabilities of failure of the watershed algorithm
of a real chromatogram is not enough. An experimental test is
needed to compare the calculated failure probability with the actual
number of times that the watershed algorithm results in the wrong
segmentation of a two-dimensional peak.

To simplify the notation, we will use W-algorithm to refer to the
watershed algorithm and C-algorithm for the algorithm described
in Section 2.2.2. The W-algorithm was applied to the same data used
in Section 4.2 and compared with the results obtained with the C-
algorithm. The two algorithms produced a different peak list, show-
ing peak areas and peak regions that do not correspond completely.
This is because of differences in the way the two algorithms calcu-
late the two-dimensional peak boundaries. For example, the region
corresponding to a single two-dimensional peak obtained with the
C-algorithm could be covered by two (or more) peaks with the
W-algorithm. Additionally, each of these two-dimensional peaks
(detected with the W-algorithm) described a region that could be
covered by more than one peak with the C-algorithm. To avoid these
confusing situations, some conditions were applied to reduce the
two original peak lists. Two conditions were applied. As for the first
condition, only peaks that share 80% or more of the detected peak
area and have a one-to-one correspondence between both peak-list
algorithms were accepted in the pruned peak list. As for the second
condition, only peaks that have a one-to-two or two-to-one corre-
spondence in at least 80% of the area were accepted in the peak lists
(i.e., 80% or more of the area of the peak is explained by two peaks
in the other peak list or vice versa). Finally, as in Section 4.2, peaks
containing only one sub-peak were eliminated from the list.

The study showed that 9% of the (pruned) peak list obtained
with the C-algorithm were single two-dimensional peaks that cor-
responded with two peaks detected with the W-algorithm. On
the other hand, 3% of the (pruned) peak list obtained with the
W-algorithm represent single two-dimensional peaks that corre-
sponded with two peaks with the C-algorithm.

Therefore, taking the C-algorithm as a reference, the W-
algorithm fails splitting the peaks when they are supposed to be
merged in 9% of the cases, and it merges the peaks when they are
supposed to be split in 3% of the cases. The figure of 9% is in accor-
dance with the computations performed in the previous section
(16% of failure). The differences should be interpreted taking into
account that the reference method is not a perfect method. The

possibilities of the watershed algorithm yielding wrongly merged
peaks have not been studied in this work, and hence the figure of
3% cannot be compared with any other theoretical computation.

As mentioned before, one should take into account that it is not
possible to know a priori whether a collection of peaks corresponds
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Table 1
Experimental design to test the performance of Eq. (12).

Parameter Min value Max value Step

1� 2 18 2
2� 0.02 0.18 0.02
� −0.5 0.5 0.05–0.02a

m 6 10 2

a Depends on the situations.

∫ ti+(m/2) [ ( )2
]

G. Vivó-Truyols, H.-G. Janssen / J.

o a real two-dimensional peak. In this work, the C-algorithm has
een taken as a reference. However, the interpretation of the results
f this section should be taken with caution.

. Conclusions

Peak-detection methods in comprehensive two-dimensional
hromatography are not fully developed. Different families of
ethods exist: those based on the so-called watershed transform

nd those based on merging detected peaks that have previously
een detected in the one-dimensional signal. None of the methods

s perfect. An important drawback of the watershed algorithm is
hat it does not impose the condition of continuity for a peak, which
mplies that the signal of a substance may “appear” and “disappear”
everal times during the course of its elution. Second, it is some-
hat intolerant to variability in the second-dimension retention

ime. It can split a true single peak in two when the retention times
n the second dimension are not fully coincident. This is because the
ariability in the second dimension may produce the appearance
f a saddle point in the two-dimensional chromatographic image.

Peak-model equations were constructed and an analytical
odel was solved to give the value of maximum second-dimension

etention time variability (�2tR) that avoids the appearance of the
addle point (and, therefore, the failure of the watershed algo-
ithm). The maximum variability depends on the phase of the
wo-dimensional peak �, the modulation time m, and the peak
idth in the first and second dimension (1�, and 2�). Approxi-
ations to the exact equation are possible, allowing to derive an

nalytical model that describes the probabilities of failure of the
atershed algorithm as a function of �2tR, m, 1�, and 2�. The prob-

bility of failure was found to decrease with a decrease of �2tR, a
ecrease of 1�, an increase of 2� and an increase of m.

The validity of the approach presented here was verified based
n experimental data from the analysis of a diesel sample analysed
ith GC × GC. The example studied gave around 16% probability of

rror for the watershed algorithm. It was found that actually 9% of
he peaks were split (compared to the conventional peak-detection
lgorithm). The latter figure, however, should be taken with care.
full experimental verification of this figure is impossible since

here is no reference method to contrast the watershed-algorithm
erformance.

Probabilities of failure of the watershed algorithm are around
0% in normal situations in GC × GC. However, some care should be
aken about robustness of each situation. In some chromatographic
onfigurations, small variations in �2tR, m, 1�, or 2� can lead to a
harp increment on the probabilities of failure of the watershed
lgorithm.
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ppendix A.

.1. Empirical confirmation of Eq. (12)

In order to test the performance of Eq. (12), an experimen-
al design with computer-generated signals was carried out.
hromatograms containing a single two-dimensional peak were

omputed following Eq. (6). In a second step, the one-dimensional
trip of data was “folded” into a two-dimensional matrix, each col-
mn representing the signal collected within a modulation cycle.
he resulting data was submitted to peak detection with the water-
hed algorithm. The purpose of the experiment was to test the
Fig. A1. Performance of Eq. (12). Experimental points are calculated as shown in
Appendix A.1.

maximum variability in 2tR that the watershed algorithm could
support without splitting a two-dimensional peak into two peaks.
To introduce this variability, Eq. (6) was used instead of Eq. (4), in
the same way as it was done to represent the situation in Fig. 3d–f.

The experimental design covered different combinations of
1�, 2�, m, �, as defined in Table 1, resulting in around 10,000
situations. For each situation (i.e., each combination of 1�, 2�, m, �
values), the maximum value of ı that could support the application
of the watershed algorithm without resulting in a split peak was
found. To this aim, a simple, non-linear search algorithm was
programmed. The algorithm was automatically testing different
values of ı, generating the two-dimensional chromatogram with
Eq. (6), and decreasing the value of ı when the application of the
watershed resulted in a split peak, and increasing it otherwise.
With this method, the critical value of ı could be approximated
with a precision up to 1e−7 s at a relatively low computational cost.
Note that the critical value of ı is equivalent to the experimental
value of �tcrit.

At each situation, the predicted value of �tcrit using Eq. (12)
was also calculated. Predicted values were compared with experi-
mental ones. Fig. A1a depicts this comparison. As can be seen, the
performance of Eq. (12) is excellent for all situations, which con-
firms that the model is correct. Therefore, it is clear that the reason
for failure of the watershed algorithm is indeed the appearance of
the saddle point due to retention time variability.

A.2. Approximation of Eq. (12) using trapezoidal integration

Eq. (2) can be approximated by:
ai = A
1�

√
2� ti−(m/2)

exp −1
2

t
1�

dt

≈ A
1�

√
2�

m
1�

exp

[
−1

2

(
ti

1�

)2
]

(A1)
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here we have integrated the Gaussian curve between a and b
aking use of the trapezoidal rule:

a

b

exp

[
−1

2

(
t

�

)2
]

dt ≈ a − b

�
exp

[
−1

2

(
(a + b) /2

�

)2
]

(A2)

As the trapezoidal rule is used, the lower the (a − b)/� ratio, the
ore exact the approximation becomes. Therefore, the lower the
/1� ratio, the more exact the approximation of Eq. (A1).

Considering this approximation, Eq. (4) yields:

(t) ≈ A
1�2�2�

m
1�

∞∑
i=−∞

exp

[
−1

2

((
t − (i + �)m

2�

)2

+
(

(i + �)m
1�

)2
)]

(A3)

The equivalent equation for the approximated Eq. (5) for a single
ub-peak becomes:

i(t) ≈ A
1�2�2�

m
1�

exp

[
−1

2

((
t−(i + �)m

2�

)2

+
(

(i + �)m
1�

)2
)]

(A4)

With the use of the approximated model, Eq. (12) can be strongly
implified. If Eq. (A3) is used instead of Eq. (4), yi,max (Eq. (7)) sim-
lifies to:

i,max ≈ A
1�2�2�

m
1�

exp

[
−1

2

(
(i + �)m

1�

)2
]

(A5)

For case (i), Eq. (8) is simplified to:

0(t) ≈ A
1�2�2�

m
1�

exp

[
−1

2

((
t − �m

2�

)2

+
(

�m
1�

)2
)]

= y1,max

≈ A
1�2�2�

m
1�

exp

[
−1

2

(
(1 + �)m

1�

)2
]

(A6)

hich yields

t − �m
2�

)2

+
(

�m
1�

)2

≈
(

(1 + �)m
1�

)2

(A7)

nd therefore

tcrit ≈
2�
1�

m
√

1 + 2� (A8)

For case (ii), a similar route can be followed yielding:

tcrit ≈
2�
1�

m
√

1 − 2� (A9)

As the function is symmetric, Eqs. (A8) and (A9) can be rear-
anged to a single equation:

tcrit ≈
2�
1�

m

√
1 − 2

∣∣�∣∣ (A10)

The performance of the approximated model (Eq. (A10)) was
ested using the same experimental design described in Section
.1. As can be seen (Fig. A2), unfortunately a notable bias remains:

ome situations yield to �tcrit values significantly lower than the
redicted model. One can conclude that the simplified model is
ptimistic in calculating the maximum ı value supported by the
atershed algorithm. Experimental values of �tcrit are always

elow the predicted ones.
Fig. A2. Performance of Eq. (A10). Experimental points are calculated as shown in
Appendix A.1.

A.3. Approximation of Eq. (12) using simulated data

The experimental values depicted in Fig. A2 were used to correct
Eq. (A10). This equation can be re-written taking into account the
deviation (ε) between the calculated and the experimental values:

�tcrit =
2�
1�

m

√
1 − 2

∣∣�∣∣+ ε (A11)

Deviations of the equation occur because of the approximation
performed to calculate the integral in Eq. (A2). Fortunately, ε is

approximately linear against (2�/1�)m
√

1 − 2
∣∣�∣∣when 1� and m

are constant. Fig. A3a illustrates this for two different pair val-
ues of 1� and m. The fact that the error depends on m and 1�
is in accordance with Section A2, were it has been stated that
the error introduced by computing the integral should depend
on the m/1� ratio. A straight line could be fitted to all the ε vs.

(2�/1�)m
√

1 − 2
∣∣�∣∣ points sharing the same 1� and m values:

ε = a + b

(
2�
1�

m

√
1 − 2

∣∣�∣∣) (A12)

This operation was performed for all 1� and m pair. The fitted
values of a were, in all cases, non-significant. A list of different b val-
ues was obtained for each 1� and m pair. In a next step, the different
values of b were represented against the m/1� ratio (Fig. A3b). For-
tunately again, the plot follows approximately a linear trend, and
therefore a straight line could be fitted:

b = ˛ + ˇ

(
1�

m

)
(A13)

The experimental values of ˛ and ˇ were ˛ = 1.037 and
ˇ = −0.094. Rearranging Eqs. (A11)–(A13), and neglecting the value
of a in Eq. (A12) yields:

�tcrit =
2�
1�

m

√
1 − 2

∣∣�∣∣(˛ + ˇ
m
1�

)
(A14)
The accuracy of this equation is checked in Fig. A4. As can be
seen, the equation is approximately as accurate as Eq. (12), solving
then the problems associated with Eq. (A10). Note that Eq. (A14)
simplifies into (A10) when ˛ = 1 and ˇ = 0.
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Fig. A3. (a) Representation of ε (Eq. (A11)) against (2�/1�)m

√
1 − 2

∣∣�∣∣ for two

cases with 1� and m constant (values of 1� and m are overlaid). (b) Linear fitting of
the m/1� against the b value (Eq. (A12)).

[

[
[

[

[

Fig. A4. Performance of Eq. (A14) with v values of ˛ = 1.037 and ˇ = −0.094. Experi-
mental points are calculated as shown in Appendix A.1.
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